奇偶问题(五年级奥数题及答案)
来源:奥数网整理 文章作者: 2011-08-30 15:50:44
奇偶问题用代表整数的字母a、b、c、d写成等式组:abcd-a=1991abcd-b=1993abcd-c=1995abcd-d=1997试说明:符合条件的整数a、b、c、d是否存在。解:由原题等式组可知:a(bcd-1)=1991,b(acd-1)=1993,c(abd-1)=1
奇偶问题
用代表整数的字母a、b、c、d写成等式组:
a×b×c×d-a=1991
a×b×c×d-b=1993
a×b×c×d-c=1995
a×b×c×d-d=1997
试说明:符合条件的整数a、b、c、d是否存在。
解:由原题等式组可知:
a(bcd-1)=1991,b(acd-1)=1993,
c(abd-1)=1995,d(abc-1)=1997。
∵1991、1993、1995、1997均为奇数,
且只有奇数×奇数=奇数,
∴a、b、c、d分别为奇数。
∴a×b×c×d=奇数。
∴a、b、c、d的乘积分别减去a、b、c、d后,一定为偶数.这与原题等式组矛盾。
∴不存在满足题设等式组的整数a、b、c、d。
相关推荐
相关阅读:
编辑推荐: