奥数网 奥数南宁站 > 杯赛 > 希望杯 > 历届真题 > 正文

2011年第16届华杯赛小学组初赛试卷及答案

来源:深圳奥数网 文章作者:紫妍 2011-09-06 17:54:18

答案请进入E度论坛讨论区:http://bbs.eduu.com/f.php?referer=http%3A//bbs.eduu.com/forum-1465-1.html

已有名师对第十六届华杯赛初赛试卷进行详解
查看与讨论请进:E度论坛

 

  【参考答案及详解】

  1.任何四个连续自然数之和一定被4除余2,所以只有102满足条件。

  “都为合数”这个条件可以被无视了。

  C

  2.容易发现,如果原数字有n根火柴,则对应数字7-n。

  原数字的火柴数目依次是2,5,5,4,5,6,3,7,6,6,

  包含了2,3,4,5,6,7,共6个不同数字,所以对应的也有6个不同的。

  C

  3.这属于和倍问题,大数是小数的6倍,所以它们的和等于小数的7倍,

  即小数为6/7,大数为36/7,两数之积为216/49,两数之差为30/7=210/49,

  所以差为6/49。

  D

  4.任何两人说的话都不能同时为真,所以最多有一个人说的是真话,如果

  有一个人复习了,那么李说的是真话,符合题意;如果没有人复习了,

  那么张说的是真话,矛盾。

  B

  5.看蚂蚁所在的列,可知应该在中间一列,这列上有N和Q;

  看蚂蚁所在的行,可知应该在中间一行,所以是N。

  B

  6.增加3台计算机,时间变成75%也就是3/4,说明计算机增加到4/3,

  增加了1/3,原来有9台;如果减少3台计算机,减少到2/3,时间变为

  3/2,增加了1/2,所以原定时间是5/6×2=5/3(小时)。

  A

  7.如图所示,有8个。画出其中的两个,其余的完全对称。

  8

  8.相遇后,甲还需要3小时返回甲地。第二次相遇时,甲距离相遇点的

  距离等于甲2.5小时的路程,乙用了3.5小时走这些路程,所以甲乙速度比

  为7:5。甲乙相遇需要3小时,那么乙单独到需要180×12÷5=7.2小时。

  7.2小时

  9.易知夹在平行线之间的△ABM和△EFM面积相等,△CDN和△EFN面积相等。

  而△EFM和△EFN的面积之和等于EF×(MO+ON)÷2=26,所以空白部分的面积

  总和为52,所求答案为65。

  65

  10.显然华=1。

  总共有9个数字,也就是说0到9中有一个不能用,根据弃九法,5不能用。

  每进一位数字和减少9,0+1+2+3+4+6+7+8+9-(2+0+1+1)=36,所以共进4位。

  所以个位和十位之一需要进两位,有两种可能:

  (1)个位数字之和为11,十位数字之和为20,百位数字之和为8;

  (2)个位数字之和为21,十位数字之和为9,百位数字之和为9。

  为了让“华杯初赛”尽量大,“杯”应尽量大,“十”应尽量小。

  “十”最少为2,优先考虑情况(2),此时“杯”可以等于7。

  剩余数字0,3,4,6,8,9,个位和为21的显然是4+8+9,

  十位和为9的剩下0+3+6,所以最大为1769。

  不必再考虑(1)了。

  1769

相关阅读: